Protein engineering of the transcriptional activator FhlA To enhance hydrogen production in Escherichia coli.

نویسندگان

  • Viviana Sanchez-Torres
  • Toshinari Maeda
  • Thomas K Wood
چکیده

Escherichia coli produces H(2) from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H(+), 2e(-), and CO(2) from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H(2) from 2H(+) and 2e(-). FHL protein production is activated by the sigma(54) transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H(2) production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of P(fdhF) and P(hyc) is less sensitive to formate regulation, and with FhlA363 (E363G), P(hyc) transcription increases but P(hyp) transcription decreases and hydrogen production is less affected by the repressor HycA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering to enhance bacterial hydrogen production

Hydrogen fuel is renewable, efficient and clean, and fermentative bacteria hold great promise for its generation. Here we use the isogenic Escherichia coli K-12 KEIO library to rapidly construct multiple, precise deletions in the E. coli genome to direct the metabolic flux towards hydrogen production. Escherichia coli has three active hydrogenases, and the genes involved in the regulation of th...

متن کامل

The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding.

OxyS is a small untranslated RNA which is induced in response to oxidative stress in Escherichia coli. This novel RNA acts as a global regulator to activate or repress the expression of as many as 40 genes, including the fhlA-encoded transcriptional activator and the rpoS-encoded sigma(s) subunit of RNA polymerase. Deletion analysis of OxyS showed that different domains of the small RNA are req...

متن کامل

Sodium regulation of GAF domain function.

Cyclic nucleotide PDEs (phosphodiesterases) regulate cellular levels of cAMP and cGMP by controlling the rate of degradation. Several mammalian PDE isoforms possess N-terminal GAF (found in cGMP PDEs, Anabaena adenylate cyclases and Escherichia coli FhlA; where FhlA is formate hydrogen lyase transcriptional activator) domains that bind cyclic nucleotides. Similarly, the CyaB1 and CyaB2 ACs (ade...

متن کامل

Increased Hydrogen Production by Genetic Engineering of Escherichia coli

Escherichia coli is capable of producing hydrogen under anaerobic growth conditions. Formate is converted to hydrogen in the fermenting cell by the formate hydrogenlyase enzyme system. The specific hydrogen yield from glucose was improved by the modification of transcriptional regulators and metabolic enzymes involved in the dissimilation of pyruvate and formate. The engineered E. coli strains ...

متن کامل

Optimizing refolding condition for recombinant tissue plasminogen activator

Low molecular size additives such as L-arginine and the redox compounds have been used both in the culturemedium and in vitro refolding to increase recombinant proteins production. Additives increase proteinrefolding and yield of active proteins by suppressing aggregate formation or enhancing refolding process.In this work, a comparative study was performed on refolding of rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 17  شماره 

صفحات  -

تاریخ انتشار 2009